Abstract
Undoped GaN-based metal-oxide-semiconductor high-electron-mobility-transistors (MOS-HEMTs) with atomic-layer-deposited Al2O3 gate dielectrics are fabricated with gate lengths from 1 μm up to 40 μm. With a two-dimensional numerical simulator, we report simulation results of the GaN-based MOS-HEMTs using field-dependent drift velocity model. A developed model, taking into account polarization-induced charges and defect-induced traps at all of the interfaces and process-related trap levels of bulk traps measured from experiments, is built. The simulated output characteristics are in good agreement with reported experimental data. The effect of the high field at the drain-side gate edge and bulk trap density of GaN on the output performance is discussed in detail for the device optimization. AlGaN/GaN/AlN quantum-well (QW) MOS-HEMTs have been proposed and demonstrated based on numerical simulations. The simulation results also link the current collapse with electrons spreading into the bulk, and confirm that a better electron localization can dramatically reduce the current collapse for the QW-MOS-HEMTs. Due to the large band edge discontinuity and effective quantum confinement of the AlGaN/GaN/AlN quantum well, the parasitic conduction in the bulk is completely eliminated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.