Abstract

The miscibility of ionic liquid (IL) pairs with a common cation (1-ethyl-3-methylimidazolium [C2C1im]) and different anions (bis(trifluoromethylsulfonyl)amide [TFSI], acetate [OAc], and chloride [Cl]) was investigated at a wide range of water concentrations at room temperature. Molecular simulations predicted that the addition of water to the [C2C1im][TFSI]:[C2C1im][OAc] and [C2C1im][TFSI]:[C2C1im][Cl] mixtures would induce a liquid-liquid phase separation and that water addition to the [C2C1im][OAc]:[C2C1im][Cl] mixture would not produce a phase separation. The effect of water on the phase behavior of the IL mixtures was verified experimentally, and the IL and water concentrations were determined in each phase. Of particular importance is the analytical methodology used to determine the species' concentration, where 1H NMR and a combination of 19F NMR, Karl Fischer titration, and ion chromatography techniques were applied.

Highlights

  • The miscibility of ionic liquid (IL) pairs with a common cation (1-ethyl-3-methylimidazolium [C2C1im]) and different anions (bis(trifluoromethylsulfonyl)amide [TFSI], acetate [OAc], and chloride [Cl]) was investigated at a wide range of water concentrations at room temperature

  • We demonstrate that miscible mixtures of two ionic liquids having a common cation (1-ethyl-3methylimidaziolium or [C2C1im]) and different anions of varying hydrophilicity (chloride [Cl], acetate [OAc], and bis(trifluoromethylsulfonyl)amide [TFSI]) can be induced to separate into two liquid phases by the simple addition of water

  • We find that 1:1 molar mixtures of [Cl:TFSI] and [OAc:TFSI] exhibit this phase separation, while 1:1 molar mixtures containing [Cl:OAc] remain one phase at all water compositions

Read more

Summary

Introduction

The miscibility of ionic liquid (IL) pairs with a common cation (1-ethyl-3-methylimidazolium [C2C1im]) and different anions (bis(trifluoromethylsulfonyl)amide [TFSI], acetate [OAc], and chloride [Cl]) was investigated at a wide range of water concentrations at room temperature. Simulation and measurement of water-induced liquid-liquid phase separation of imidazolium ionic liquid mixtures (Received 3 September 2018; accepted 9 October 2018; published online 29 October 2018)

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.