Abstract

We propose a scheme to mimic and directly measure the fractional particle number in a generalized Su-Schrieffer-Heeger model with ultracold fermions in one-dimensional optical lattices. We show that the fractional particle number in this model can be simulated in the momentum-time parameter space in terms of Berry curvature without a spatial domain wall. In this simulation, a hopping modulation is adiabatically tuned to form a kink-type configuration and the induced current plays the role of an analogous soliton distributing in the time domain, such that the mimicked fractional particle number is expressed by the particle transport. Two feasible experimental setups of optical lattices for realizing the required Su-Schrieffer-Heeger Hamiltonian with tunable parameters and time-varying hopping modulation are presented. We also show practical methods for measuring the particle transport in the proposed cold atom systems by numerically calculating the shift of the Wannier center and the center of mass of an atomic cloud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.