Abstract
We report the circuit simulations and experiments of millimeter-wave radiation from a high temperature superconducting (HTS) bicrystal Josephson junction (BJJ) array. To study the effects of junction characteristic parameters on radiation properties, new radiation circuit models are proposed in this paper. The series resistively and capacitively shunted junction (RCSJ) models are packaged into a Josephson junction array (JJA) model in the simulation. The current-voltage characteristics (IVCs) curve and radiation peaks are simulated and analyzed by circuit models, which are also observed from the experiment at liquid nitrogen temperature. The experimental radiation linewidth and power are in good agreement with simulated results. The presented circuit models clearly demonstrate that the inconsistency of the JJA will cause a broad linewidth and a low detected power. The junction radiation properties are also investigated at the optimal situation by circuit simulation. The results further confirm that the consistent JJA characteristic parameters can successfully narrow the radiation linewidth and increase the power of junction radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.