Abstract

Vibro-acoustic responses of cylindrical shells immersed in ice-covered water are typical acoustic-structure coupling problems. The dynamic model of the immersed cylindrical shell was established by Finite Element Method (FEM) to obtain the vibration response. The elastic constitutive material was adopted to simulate the ice model. The acoustic model of cylindrical shells was constructed by Boundary Element Method (BEM) to gain the underwater acoustic radiation. A series of boundary conditions were defined to tackle dynamic accurate contact interactions of the cylindrical shell, fluid field and ice model. Comparative analysis with the vibro-acoustic results of numerical model was proceeded to show the practicality and effectiveness of the numerical method. Both models of fully immersed and partially immersed cylindrical shells were calculated to analyze the vibration and underwater acoustic radiation. The effect of immersion depth, ice thickness, temperature and brine volume on vibro-acoustic responses of the immersed cylindrical shells were also discussed. It provides a way to evaluate the vibro-acoustic performance of underwater vehicles in polar ice area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.