Abstract

The aim of this paper is to establish mathematical modelling and simulation for the voltage induced during movement of the moveable magnet in a double-sided magnetic spring, being part of the energy harvesting system. For various configurations of the set of permanent magnets, the repulsive forces of magnetic spring and induced voltage in energy harvester winding will be calculated. Changing the geometrical dimensions and shape of permanent magnets allows one to control the stiffness of the so-called double-sided magnetic spring, and furthermore, allows one to change the natural frequency of the energy harvester system. Properly chosen stiffness in the energy harvester system is the crucial issue for high efficiency in energy recovery. In a given case, the energy harvester consists of three permanent magnets inserted into a tube with coils wound on it. To calculate the force between the magnets and the magnetic flux in the coils, the ANSYS program was used. The voltages induced in coils for various configurations of the magnets were simulated in the MATLAB program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.