Abstract

Glycaemic control can reduce mortality in intensive care by 45%. A model-based control algorithm utilising insulin and nutritional glucose inputs is presented. Simulated long-term gluco-regulatory trials with the virtual-patient method using retrospective ICU patient data ( n=19) validate the approach. Two short-term proof-of-concept clinical trials test glycaemic predictive capability and the ability to adapt to patient condition. In simulation, a 312% increase in time spent in the 4–6 mmol/l euglycaemic band compared to retrospective patient data is recorded while feeding 39% greater nutrition. In the clinical trials, mean target error was 8.7% with hourly prediction horizon. About 61% of targets were achieved within ±5%, and only two targets had errors >20%, occurring during rapid deterioration in patient condition. Overall, the protocol demonstrated effective glycaemic control across the selected cohort in simulation and in highly dynamic patient conditions observed in initial proof-of-concept clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.