Abstract

Present work simulates and analyzes the rooftop photovoltaic (PV) system on buildings roofs of the University of Surabaya, Indonesia for electricity power generation. The work also to calculate greenhouse gas (GHG) emission reduction that can be obtained by PV system mounted on the building roofs. The surface area of the roofs was determined using Polygon feature of Google Earth TM . The energy output of the system was simulated with SolarGIS pvPlanner software program. The grid-connected PV system type was chosen in the simulation. Greenhouse gas (GHG) emission reduction analysis was carried out using RETScreen program simulation. It was found that about 10,353 m 2 of the rooftop of the university buildings could be used for panel installation. The total capacity of the panels is found about 2,070 kWp with total electricity production is about 3,180 MWh per year and could supply up to 80% of the campus energy demand. The system would serve as a means of reducing 3,367.6; 2,477.2, or 1,195.7 tons of CO 2 to the atmosphere in comparison to the same amount of electricity produced by burning coal, oil, or natural gas respectively. The unit cost of PV electricity was found ranging from 0.10 – 0.20 USD/kWh. From economic aspects, the rooftops PV system has the potential to provide power at a competitive cost in comparison to other alternative options of power generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call