Abstract

This study used finite element analysis to simulate the temperature characteristics of a micro polymerase chain reaction (PCR) chip. The micro-PCR chip was fabricated on a silicon wafer and Pyrex glass using photolithography, wet etching, and anodic bonding methods. The main goal of this study was to analyze the temperature uniformity and distribution of the micro-PCR chip, the temperature distribution of the DNA sample, and the transient temperature difference between the heater and DNA sample. The finite element analysis results were also confirmed by one-dimensional theoretic analysis. The simulation results were used to improve the thermal cycling time of a rapid micro-PCR system, consisting of a rapid thermal cycling system and a micro-PCR chip. The improved thermal cycles of the rapid μPCR system were verified using serum samples from patients with chronic hepatitis C. The hepatitis C virus (HCV) amplicon of the rapid μPCR system was analyzed by slab gel electrophoresis with DNA marker separation in parallel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.