Abstract

In order to explore the bioelectric effect of 5 ns pulsed electric fields on tumor cells, a spherical single-cell multiphysics model was first established based on the finite element simulation platform. In consideration of the dielectric relaxation of the biological plasma membrane under the high-frequency electric fields, the electroporation and Maxwell stress tensors on the cell membrane and nuclear envelope were analyzed; secondly, taking MDA-MB-231 cells as the research object, combined with fluorescent probe technology, the state change and fluorescence dissipation of its subcellular structure exposed to pulse fields were studied. The results showed that 5 ns pulsed electric fields directly acted inside the cell, causing an electroporation effect and tensile stress on the nuclear envelope, destroying the integrity and order of the cytoskeleton, and damaging the functions of subcellular structures including endoplasmic reticulum, mitochondria, etc. This study provides theoretical and experimental evidence for the research and application of a high-voltage short pulse in the field of biomedical engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call