Abstract
Purpose This paper aims to design a single and double throat oil groove structure, which can reduce the drag torque of the wet clutch. Design/methodology/approach A three-dimensional simulation model was established herein using the computational fluid dynamics method. The influence of oil groove structure on the oil film flow field and the drag torque is obtained by a simulation. Findings Compared with the traditional radial oil groove, the results show that the single throat oil groove structure reduces the drag torque by about 24.59%; the double throat oil groove reduces the drag torque by about 47.27%. As the speed difference increases, the average temperature rise of the oil film of the double throat oil groove is 4°C lower than that of the single throat oil groove, indicating that it has good heat dissipation performance. The analysis results were verified by experimental results. Originality/value In this paper, the radial oil groove is taken as the reference object, and the structure of the oil groove is designed and improved. The simulation analysis and experiment verify the rule of the influence of the oil groove structure on the drag torque, which provides a new design idea for reducing the drag torque of wet clutch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.