Abstract

Paint removal is an essential process in the industrial field. Laser technology provides an effective method of paint removal to replace traditional mechanical and chemical methods. This paper establishes a continuous wave (CW) laser thermal paint removal model based on heat conduction theory and Arrhenius’ law. The paint stripping process of epoxy paint film on the surface of 6061 aluminum alloy via CW laser was studied through simulation and experiment. We found that the carbonization of the paint film during the CW laser paint removal process will inhibit the laser paint removal process. Therefore, the paint removal efficiency of the CW laser is limited. The depth of CW laser paint removal increases linearly with the CW laser power density. However, during the CW laser paint removal process, due to the pyrolysis of the paint film and the reflection of the laser by the substrate, the surface temperature of the material first increases and then decreases. In addition, after laser paint removal, the surface roughness of the material after paint removal is reduced due to the melting of the base material. The model established in this article can provide a theoretical reference for studying the CW laser paint removal process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call