Abstract

As the manufacturing industry evolves, the significance of control valve positioners in chemical production escalates. The flapper-nozzle system, the heart of control valve positioners, directly influences the linearity of system control. Presently, studies on the flapper-nozzle system primarily focus on dynamic system modeling and computational fluid dynamics simulations. However, traditional flapper-nozzle mechanisms often fail to achieve linear control objectives. This paper proposes a novel negative-pressure nozzle structure to tackle this issue, combining computational fluid dynamics and experimental methods, and considering gas compressibility during high-speed flow. Both simulation and experimental results suggest that the new structure improves the supply air pressure and broadens the linear pressure output range of the system, showing significant potential for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call