Abstract

This paper studies the electromagnetic field used for driving a vibro-impact capsule prototype for small bowel endoscopy. Mathematical models of the electromagnetic field and the capsule system are introduced, and analytical solution of the magnetic force applied on the capsule is derived and verified by experiment. The impact force between the inner mass of the capsule and the capsule body is also compared via numerical simulation and experimental testing. By comparing the capsule’s progressions under different control parameters (e.g. the excitation frequency and duty cycle), the merits of using the vibro-impact propulsion are revealed. Based on the experimental results, the optimised speed of the prototype can achieve up to 3.85 mm/s. It is therefore that the potential feasibility of using the external electromagnetic field for propelling the vibro-impact capsule system is validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call