Abstract
A novel optical fiber angular displacement sensor is reported in this study. It gets the rotating angle of an object by means of the intensity modulation of a reflected light. The sensor probe, which is composed of an emitting fiber and a receiving fiber that are aligned along the vertical direction closely, is fixed directly on the rotating object. The measurements for axial displacement and angular displacement were operated separately. In particular, measurements for angular displacement were performed when the reflector is placed at different distances from the sensor probe separately. There is an excellent linearity between the angular displacement and the sensor output power. The results indicate that the larger the distance between the sensor probe and the reflector, the higher sensitivity the angular displacement sensor has. A theoretical model of the sensor is also developed and the simulate computation demonstrates that the theoretical results are in accordance with the experimental ones. The linear sensing range is ±7.2°, and the maximum sensitivity is 13.71%/deg. Furthermore, the hysteresis and the reproducibility of the measurement of the sensor are investigated. The designed sensor provides a kind of simple and effective method for measuring the angular displacement of a shaft system in practice due to its small size, light weight, good linearity and reproducibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.