Abstract

The influence of porosity on ultrasonic waves propagation in porous media, specifically in the bone tissue is examined in this work. The tissue is considered as a complex medium (anisotropic and heterogeneous) made of a rigid skeleton, filled by a medium which is supposed to be fluid. The theory of Biot is well suitable to describe the behavior of the ultrasonic waves in this tissue. The aim of this work is to determine how porosity affects propagation velocities of the various waves susceptible to propagate through the cortical or trabecular bone. By reference to this model and taking account of the viscous dissipation of the interstitial fluid, various propagation velocities were determined. A range of porosity extending from 0 to 1 and two types of fluid saturation (water and marrow) was considered. The results obtained show the influence of porosity on the propagation velocities of the longitudinal waves (the slow and the fast one) as well as of the transverse wave. Porosity and the nature of the interstitial fluid affect the dissipation phenomenon. According to the model suggested in this study and to the experimental results obtained, it can be affirmed that the determination of various propagation velocities in the bone leads to its characterization and can inform us about its pathological status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call