Abstract

This paper addresses the issues caused by traditional tractors during seeding operations, such as soil compaction, decreased soil fertility, use of unclean fuel leading to environmental pollution, and the disruption of sustainable development. In response, the study designs a compact and lightweight electric four-wheel-drive chassis for a seeding robot suitable for strip planting of soybeans and corn. Using RecurDyn(V9R2) software and MATLAB/Simulink(2020a) modules, the paper conducts simulation and analysis of the straight-line driving process of the electric four-wheel-drive chassis on hilly terrain in field conditions. The simulation results demonstrate that when the suspension stiffness is 14.4 kN/m and the damping is 900 N·s/m, the chassis achieves optimal vibration reduction and straight-line driving performance. Experimental results based on the simulation findings indicate a high consistency between the simulation and actual models, confirming that optimizing the suspension damping parameters effectively improves chassis smoothness and enhances operational quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call