Abstract

The high-speed on-off valve is the core component for adjusting the oil pressure of the pressure reducing valve in the clutch shifting system of engineering vehicles, and its response speed is one of the important indicators to measure its performance. In order to improve the dynamic performance of high-speed on-off valve, the electromagnet with solid magnetic isolation structure was designed and simulated by considering the eddy current loss factor. A high-speed on-off valve electromagnetic actuator with high response speed was obtained. Firstly, the theoretical calculation and verification of the theory were carried out by using the electromagnet design theory, and the theoretical model of the electromagnet was built. Secondly, the electromagnet parameter model was brought into the finite element simulation software ANSYS Electronics to simulate and optimize the static magnetic field and the transient magnetic field respectively. The different structural parameters (guide bush thickness, outer magnetic pole thickness, magnetic isolation structure, armature length) were analyzed. And the effect of the coil parameters (number of strands) on the steady-state electromagnetic force and the dynamic displacement of the armature was analyzed. The values of the structural parameters of the electromagnet were subsequently determined. Finally, the static and dynamic characteristics experiment of the magnetically separated solid electromagnet is designed and processed. The experiment and simulation results are in good agreement. The feasibility of the high-resistance electromagnet structure design and the correctness of the simulation are verified. Reasonable optimization of structural parameters and coil parameters has obvious significance for improving the dynamic characteristics of high-speed on-off valve electromagnets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call