Abstract

Different capillary-driven planar baffle micromixers with a trigger valve which were fabricated on polymethylmethacrylate sheets using CO2 laser ablation and thermal bonding are investigated. Two main modified staggered and meander baffle structures were used to compare the mixing efficiency. The modified staggered baffle structure has lower capillary flow resistance and faster speed compared with the meander one. Conversely, the meander baffle structure has higher mixing efficiency at lower flow speed with enough diffusion time than the modified staggered one. The effective channel height of the trigger valve was simulated to be between 220 and 434 μm for merging two fluids at negative capillary pressure. The experiments also verified the trigger value worked at the channel height of 351 μm for two fluids merged together to flow forward but it failed at 169 μm height for only one fluid flow without merging. The mixer with the meander baffle structure performed wiht the best mixing efficiency of 94% among the design structures because of the long flow time and short average diffusion length in the mixing zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.