Abstract

In this paper, we present the simulation and experimental validation of an ultra-thin planar metamaterial absorber, which is composed of Jerusalem crosses loaded by interdigital capacitors. By increasing the coupling capacitance between adjacent unit cells, we are able to significantly lower the operating frequency of the absorber. The measured results indicate that the metamaterial absorber achieves a peak absorption of 88.48% at 1.58 GHz. The total thickness and the unit cell size of the absorber are 2 mm and 11 mm, which are approximately 1/95 and 1/17 of the working wavelength, respectively. Additionally, the Jerusalem crosses and the metallic ground plane are connected by vias, this makes the metamaterial absorber achieve wide-angle absorption for both transverse electric and transverse magnetic polarizations electromagnetic wave. The absorptivity is still large even at the incident angle of 60o, and the frequency of the absorption peak almost has no deviation, this makes the absorber more practical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.