Abstract

Experimental data from a laboratory-scale wet scrubber simulator confirmed that oxidized mercury, Hg2+, can be reduced by aqueous S(IV) (sulfite and/or bisulfite) species and results in elemental mercury (HgO) emissions under typical wet FGD scrubber conditions. The S(IV)-induced Hg2+ reduction and Hg0 emission mechanism can be described by a model which assumes that only a fraction of the Hg2+ can be reduced, and the rate-controlling step of the overall process is a first-order reaction involving the Hg-S(IV) complexes. Experimental data and model simulations predict that the Hg2+ in the flue gas can cause rapid increase of Hg0 concentration in the flue gas across a FGD scrubber. Forced oxidation can enhance Hg2+ reduction and Hg0 emission by decreasing the S(IV) concentration in the scrubbing liquor. The model predictions also indicate that flue gas Hg0 increase across a wet FGD scrubber can be reduced by decreasing the pH, increasing S(IV) concentration, and lowering the temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call