Abstract

The miniaturization of products requires the mass production of microparts. The microforming can well meet this requirement. Due to the emergence of decreasing flow stress scale effect in the micro scale, the traditional forming process and theory may fail. Based on the crystal plasticity theory, upsetting tests of micro copper cylinders with different dimensions and grain sizes were simulated, and the decreasing flow stress scale effect was studied and discussed. Results show that with the decrease of billet dimensions, the flow stress is gradually decreased, and the decreasing flow stress scale effect is emerged; with the increase of grain size, the decreasing flow stress scale effect is more remarkable. It can also be seen that the decreasing flow stress scale effect can be well simulated with the crystal plasticity theory, and the necessary relevant information is provided for deeper understanding on this scale effect, as well as the design of processes and die structures in the microforming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.