Abstract

This paper reports a novel L-shaped impact-ionization MOS (LI-MOS) transistor structure that achieves a subthreshold swing of well below 60 mV/decade at room temperature and operates at a low supply voltage. The device features an L-shaped or an elevated impact-ionization region (I-region), which displaces the hot carrier activity away from the gate dielectric region to improve hot carrier reliability and VT stability problems. Germanium, which has a lower bandgap and impact-ionization threshold energy lower than silicon, is chosen as the material of choice for the LI-MOS transistor structure. Device physics and design principles for the LI-MOS transistor are detailed through extensive two-dimensional device simulations. The LI-MOS transistor exhibits excellent scalability, making it suitable for augmenting the performance of standard CMOS transistors in future technology generations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.