Abstract

This paper shows the application of T-shaped micromixers for the generation of aerosols with nanoscale droplets by the mixing of a hot vapor–gas mixture with a cold gas. The fast mixing within a T-shaped micromixer leads to a high supersaturation of the vapor and therefore to an instantaneous, homogeneous nucleation and particle growth. Different mixer geometries, mixing ratios, and gas temperatures have been investigated by numerical simulation to yield optimum mixing results over a wide range of operational parameters. Optimized microreactor geometries were designed and fabricated in silicon with Pyrex glass lids. Special attention was paid to thermal insulation and particle deposition at the channel walls. This concerns not only the mixing chip, but also the design of the fluidic mount with only few bends and corners. Initial experimental results for particle deposition and aerosol generation are presented. High temporal temperature gradients up to 106 K/s lead to a rapid condensation and forming of nanosized particles with a mean diameter of 20–50 nm and a narrow size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.