Abstract
Hybrid fluid-PIC simulations aimed at a better understanding of the implosion physics and the material mixing into the hot spot are described. The application of a hybrid fluid-PIC code is motivated by the difficulty of modeling the material mixing by the commonly used radiation hydrodynamic simulations. Hybrid fluid-PIC techniques, which treat the ions with the traditional particle-in-cell method, and electrons with a massless fluid, are more adaptable to handle the heating of DT fuel through PdV work and the material mixing near the DT ice-gas interface and ablator-fuel interface of a compressed capsule. During implosion shock convergence, significant reactant temperature separation and a noticeable amount of material mixing are observed, both of which have important consequences for estimating neutron yield and the understanding of implosions. Physical explanations for these phenomena are discussed, with the non-equilibrium effect in the hotspot and hydrodynamic instabilities at the interface as the likely explanation, respectively. The hybrid fluid-PIC method would be helpful to test the phenomenological fluid model describing the material mixing in ICF implosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.