Abstract

As a nondestructive testing method, the magnetic flux leakage (MFL) testing technique is widely used for the testing of surface and near-surface areas in ferromagnetic materials. The MFL field is influenced by parameters of defects, strength of excitation, sensor lift-off value and electromagnetic noises etc. A 2-D finite element method (FEM) simulation model is established in this paper to analyze the influence of lift-off values under the condition of mechanical vibration and electromagnetic noises. The distribution of the MFL field peak for different lift-off values and different depth defects is presented. The defect quantization errors caused by the mechanical vibration and electromagnetic noises are introduced to analyze the influence of lift-off values and electromagnetic noises. The best range of lift-off values can be determined from the results of error analysis. It is effective to improve the measuring accuracy in practical MFL testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.