Abstract

Potential hazards should be seriously assessed and avoided when handing liquid hydrogen, such as the flammable vapor cloud and the low temperature injury. A three-dimensional CFD model for liquid hydrogen dispersion is developed, with the guidelines proposed by the Working Group of the Architectural Institute of Japan constructing the wind environment. Spills with different wind speeds and vertical wind flow profiles are numerically investigated. The cloud’s dimension in streamwise direction is positively correlated with the wind speed. The increased wind speed and vertical speed gradient hinder the cloud from rising up. The duration of the flammable cloud increases first and then decreases, with the increment in wind speed, indicating that the dilution time is related to both the wind turbulence and the windward area for a buoyant cloud. The investigations reveal the mechanisms and characteristics of hydrogen cloud evolution in different wind flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.