Abstract

During the sintering process of solid oxide fuel cells (SOFCs), the mismatch in the thermophysical properties of materials can lead to excessive local thermal stress and warpage. By establishing a 3D multiphysics model, the stress distribution and displacement during sintering are studied. The results show that when the anode and electrolyte thicknesses are 0.2 mm and 0.02 mm, respectively, the maximum sintering stress is 38.8 MPa, which is 48% lower than the maximum value of all simulation results. In this study, when the anode thickness is 0.7 mm and the electrolyte thickness is 0.008 mm, the maximum warpage displacement is the smallest at 0.14 mm. A sintering preparation method for partially coated cells is proposed. These results can be used to optimize the sintering process of SOFCs and greatly reduce the sintering stress and warpage of SOFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call