Abstract

A bi-dimensional population balance model was presented in the previous part of this series of papers to simulate the time variations of two characteristic sizes of hydroquinone particles during crystallization. The multidimensional population balance equations combined with kinetic models and mass balance equations were shown to allow the simulation of the solution crystallization of hydroquinone characterized by a rod-like habit. Semi-continuous isothermal operations were performed at the lab-scale in the presence of various additive concentrations. Both the experimental solute concentration trajectory and the final bi-dimensional crystals size distribution were correctly predicted by the model. The simulated elongation shape factor characterizing the crystal shape was therefore in agreement with the experimental one. Due to the use of tailor-made additive, inhibition effects were observed to affect both primary nucleation and growth kinetics in the length direction. For secondary nucleation, indirect effects were assumed to occur which allowed satisfactory predictions of the final number of fine particles. The representation of the kinetics involved required the evaluation of a set of nine parameters. As a result it was observed that the elongation ratio characterizing the shape of the rod-like particles increases with the length in a nonlinear way. A major interest of the two-dimensional model lies in its ability to relate the time variations of the crystal habit: the particles lengthen in the first moments of their growth and then progressively get thicker until the end of the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.