Abstract

In this paper, an Atmosphere-Vegetation Interaction Model (AVIM) is coupled to the Regional Integrated Environment Model System (RIEMS), and a 10-year integration for China is performed using the RIEMS-AVIM. The analysis of the results of the 10-year integration shows that the characters of the spatial distributions of temperature and precipitation over China are well simulated. The patterns of simulated surface sensible and latent heat fluxes match well with the spatial climatological atlas: the values of winter surface sensible and latent heat fluxes are both lower than climatological values over the whole country. Summer surface sensible heat flux is higher than climatological values in western China and lower in eastern China, while summer surface latent heat flux is higher than climatological values in the eastern and lower in the western. Seasonal variations of simulated temperature and precipitation of RIMES-AVIM agree with those of the observed. Simulated temperature is lower than the observed in the Tibetan Plateau and Northwest China for the whole year, slightly lower in the remaining regions in winter, but consistent with the observed in summer. The simulated temperature of RIEMS-AVIM is higher in winter and lower in summer than that of RIEMS, which shows that the simulated temperature of RIEMS-AVIM is closer to the observed value. Simulated precipitation is excessive in the first half of the year, but consistent with the observed in the second half of the year. The simulated summer precipitation of RIEMS-AVIM has significant improvement compared to that of RIEMS, which is less and closer to the observed value. The interannual variations of temperature and precipitation are also fairly well simulated, with temperature simulation being superior to precipitation simulation. The interannual variation of simulated temperature is significantly correlated with the observed in Northeast China, the Transition Region, South China, and the Tibetan Plateau, but the correlation between precipitation simulation and observation is only significant in Northwest China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.