Abstract
Reverse circulation impact drilling has the advantages of high drilling efficiency and less dust, which can effectively form holes in hard rock and gravel layer. As integral reverse circulation drill bits used in the conventional down-the-hole (DTH) hammers are only suitable for specific formations, the whole set of DTH hammer needs to be replaced when drilling different formations. In this paper, several types of split drill bits for different drilling technologies are designed. The flow field characteristics of one of the split drill bits is analyzed based on the computational fluid dynamics (CFD) method, with four technic parameters considered, which are input flow rate, number of inlet holes, angle of injection exhaust holes, and diameter of injection exhaust holes, respectively. Three parameters are selected as indicators to evaluate the rationality and performance of the split drill bit, which are injection exhaust hole outlet mass flow rate, ratio of the mass flow rate out of injection exhaust holes to the whole inlet mass flow rate, and maximum pressure at the upper end of the split drill bit. According to the CFD analysis results, the above four technic parameters influence the flow rate and pressure in different rules. Considering the injection capacity, pressure loss, and bit strength, inlet holes of 10, injection exhaust holes with an angle of 50°, and injection exhaust holes with a diameter of 12 mm are recommended to obtain ideal reverse circulation. Different types of split drill bits were manufactured, and drilling experiments were carried out in unconsolidated formations. The maximum drilling rate can reach 1.5 m/min in the drilling experiments. The split drill bit proposed in this paper exhibits excellent adaptability for reverse circulation drilling in loose formations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.