Abstract

Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts. This paper reports a hydraulic-forming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings. A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis. The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results. On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method, a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics. The effects of fluid characteristics, shaping pressure, axial feed rate, and friction coefficient on the wall thicknesses of torsions beams during formation were investigated. Fluid movement speed was related to tube deformation. Shaping pressure had a significant effect on rounded corners and straight edges. The axial feed speed was increased, and the uneven distribution of wall thicknesses was effectively improved. Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region, it had a significant influence on a large deformation of wall thickness in the V-shaped area. In this paper, a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.