Abstract

A hydrocyclone, as a common liquid/solid grading instrument, was chosen to separate calcium sulfate particles from crude carnallite during the KCl production process on the Tibetan Plateau in China, because CaSO4 particles are independent of KCl particles and have a smaller particle size distribution. The local altitude on the Tibetan Plateau in China is over 3000 m, so the effects of low atmospheric pressure on the separation performance of the hydrocyclone should be considered. In this article, the computational fluid dynamics (CFD) simulation technique was used to investigate the hydrodynamics and particles separation performance of an industrial hydrocyclone with a 428-mm diameter at both plain and plateau atmospheric pressures. In this CFD approach, the Reynolds stress model (RSM) was used to describe the turbulent fluid flow, the volume of fluid (VOF) multiphase model was used to simulate the interface between the liquid phase and the air core, and the stochastic Lagrangian model was used to track the particle flow. The mathematical models deveoped for the industrial hydrocyclone were tested by comparing the predicted results with the flow fields measured by Hsieh (Ph.D. Thesis, The University of Utah, Salt Lake City, UT, 1988). According to the simulation results, the environmental atmospheric pressures on the plain and plateau had effects mainly on the flow field inside the air core and near the interface between the air core and the liquid phase. It was found the direction of the axial velocity on the cylinder part and the values of the tangential velocity changed under the different environmental atmospheric pressures. When the industrial hydrocyclone was operated in the plateau environment, the separation efficiency for small particles decreased about 10% at the overflow, which was not good for CaSO4 removal, but there was no effect on the particles size larger than 350 μm, and more energy was consumed, although the difference in the split ratio was small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call