Abstract
Based on the diffraction theory model for hot-image formation, the evolution of hot-images induced by multi-scatterers located in the same plane perpendicular to the propagation axis is numerically simulated. The simulation results show that hot-images induced by coplanar multi-scatterers are also coplanar no matter whether they exist simultaneously or severally. However, if they exist simultaneously the peak intensity of the primary hot-images is weaker than if they exist severally. The unequal competition for energy between the scattered beams from the scatterers leads to the fact that part of the corresponding hot-images are relatively enhanced and the others are restrained. The results show that the hot-images of certain scatterers become stronger when any of these parameters, i.e. amplitude modulation coefficient, phase modulation coefficient and size of the surrounding scatterer, decrease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.