Abstract

BaTiO3 is one of the well-known ferroelectric and piezoelectric materials, which has been widely used in various devices. However, the microscopic mechanism of the ferroelectric domain growth is not understood well. We investigated the effects of point defects, mono- and di-vacancies of Ba, Ti, and O, on the domain growth of BaTiO3 using molecular dynamics simulation with the core-shell inter-atomic potential. We found the following: s(1) One kind of monovacancy, VO1, located on the TiO plane perpendicular to the applied electric field direction, acts to hinder the polarization inversion induced by the applied electric field. The monopole electric field produced by VO1 either hinders or assists the local polarization inversion in accordance with the local intensity of the total electric field. (2) The 1st-neighbor divacancies VBa-VO and VTi-VO as compared to the 2nd-neighbor divacancies asymmetrically affect the domain growth with respect to the applied electric field, making the hysteresis behavior of applied electric field vs. polarization relation. The domain grows even at a small electric field when the directions of the applied electric field and the divacancy dipole are mutually the same. (3) The domain growth speed towards the applied electric field direction is about 2 orders of magnitude higher than that towards the perpendicular direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.