Abstract
In order to solve the problem of atmospheric influence on the far-field measurement of the quality of a laser beam, we proposed a direct wavefront measurement system based on the Hartmann detection principle, which can measure large apertures and high-power laser beams. The measuring system was composed of a lens array and a detector. The wavefront detection of a large aperture laser beam could be realized by controlling the distance between the lenses and the size of the lens. The influence of different duty cycle factors on the accuracy of the wavefront reconstruction under the same arrangement and different arrangement conditions was simulated and analyzed. The simulation results showed that when the sub-lenses of the system were not in close contact, the reconstruction accuracy of the duty factor of 0.8 was close to that of the case of the duty factor of 1. Within a certain detection range, the hexagonal arrangement of 19 lenses and the arrangement of 8 × 8 lens arrays had a high wavefront restoration accuracy; both were lower than 0.10 λ. The system proposed in this paper was suitable for measuring a large aperture laser beam, providing a new idea for measuring and analyzing the quality of large aperture laser beams. It also has an important significance for improving the measurement accuracy of the beam quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.