Abstract

The effect of joint size on the loading capacity of wood single lap joints was studied with an orthogonal experimental design. The maximum load, modulus of elasticity, and modulus of rupture were the three mechanical indexes used to evaluate wood joint quality. A simulation model of bending tests was established using the finite element method. The stress distributions of the joints were analyzed; the peak stripping stress was reduced with an increase in gluing length and thickness. The increase in the corresponding experimental values of maximum load was in agreement with this conclusion. The joint force for various loading positions was simulated, and the peak stress was lowest at the location with the maximum offset. Therefore, the bending capacity of the wood joints can be improved by changing the loading position. Nondestructive fast Fourier transform (FFT) testing of the bending vibration was used to obtain the dynamic elastic modulus. A significant correlation existed between modulus of elasticity and modulus of rupture. Finite element simulation analysis and nondestructive testing are all effective methods for quality evaluation of wood joints, and they can be applied to the design and testing of wood joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.