Abstract

As a key bearing component, steel wire ropes suffer from partial wire breakage, broken strands and other types of damage during long-term continuous use. In this study, a magnetic flux circuit was constructed around a wire rope, an excitation detection device and an air gap. The relationship between the direction and angle of the magnetic line of force on the damaged end face was analysed and the waveforms of the inverted U-shaped and M-shaped leakage flux signals and their transition intervals were determined. Following this, focusing on the influence of factors such as the length of the damage, the cross-sectional area and the lift-off value on the magnetic flux leakage signal, the changes in the wave width and the peak value under different variables were analysed and the distribution law of the leakage magnetic field around the wire rope damage under different control variables was determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call