Abstract

Coupling surface water and groundwater models dynamically based on a simultaneous simulation of saturated and unsaturated zones of soil is a useful method for determining the recharge rate and flow exchange between a river and an aquifer as well as simultaneous operation of water resources systems. Thus, the main objectives of this study are to investigate the effects of surface water and groundwater interactions through their systematic simulation and to create a dynamic coupling between surface water and groundwater resources of the area by relevant mathematical models. Accordingly, hydrologic soil moisture method and MODFLOW model were employed to simulate the unsaturated and saturated zones, respectively. The results revealed that simultaneous simulation of the saturated and unsaturated zones of the soil can illustrate the interaction between surface water and groundwater at any spatial and temporal intervals well through using complete hydroclimatological balance components in the form of a coupled model. The application of this method in the Loor-Andimeshk Plain, located in the southwest of Iran, showed that aquifer recharge through the plain area from November to March is due to precipitation. On the other hand, in the warm months (June to September), the plain is merely fed through irrigation water penetration. As the level of river water in both Dez and Balarood rivers is higher than the Loor-Andimeshk aquifer level, hence the exchange occurs as a leakage from the river to the aquifer. The highest and lowest values of average exchangeable water in Balarood River occur in March and April and in Dez River are from June to September.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.