Abstract

The noise of gravitational-wave (GW) interferometers limits their sensitivity and impacts the data quality, hindering the detection of GW signals from astrophysical sources. For transient searches, the most problematic are transient noise artifacts, known as glitches, that happen at a rate around $1\text{ }\text{ }{\mathrm{min}}^{\ensuremath{-}1}$, and can mimic GW signals. Because of this, there is a need for better modeling and inclusion of glitches in large-scale studies, such as stress testing the pipelines. In this proof-of concept work we employ generative adversarial networks (GAN), a state-of-the-art deep learning algorithm inspired by game theory, to learn the underlying distribution of blip glitches and to generate artificial populations. We reconstruct the glitch in the time domain, providing a smooth input that the GAN can learn. With this methodology, we can create distributions of $\ensuremath{\sim}{10}^{3}$ glitches from Hanford and Livingston detectors in less than 1 sec. Furthermore, we employ several metrics to measure the performance of our methodology and the quality of its generations. This investigation will be extended in the future to different glitch classes with the final goal of creating an open-source interface for mock data generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.