Abstract

In the centers of dense star clusters, close encounters between stars and compact objects are likely to occur. We studied tidal disruption events of main-sequence (MS) stars by stellar-mass black holes (termed μTDEs), which can shed light on the processes occurring in these clusters, including being an avenue in the mass growth of stellar-mass BHs. Using the moving-mesh hydrodynamics code AREPO, we performed a suite of 58 hydrodynamics simulations of partial μTDEs of realistic, MESA-generated MS stars by varying the initial mass of the star (0.5 M⊙ and 1 M⊙), the age of the star (zero-age, middle-age and terminal-age), the mass of the black hole (10 M⊙ and 40 M⊙), and the impact parameter (yielding almost no mass loss to full disruption). We then examined the dependence of the masses, spins, and orbital parameters of the partially disrupted remnant on the initial encounter parameters. We find that the mass lost from a star decreases roughly exponentially with increasing approach distance and that a 1 M⊙ star loses less mass than a 0.5 M⊙ one. Moreover, a more evolved star is less susceptible to mass loss. Tidal torques at the closest approach spin up the remnant very close to break-up velocity when the impact parameter is low. The remnant star can be bound (eccentric) or unbound (hyperbolic) to the black hole; hyperbolic orbits occur when the star’s central density concentration is relatively low and the black-hole-star mass ratio is high, which is the case for the disruption of a 0.5 M⊙ star. Finally, we provide best-fit analytical formulae for the aforementioned range of parameters that can be incorporated into cluster codes to model star-black-hole interaction more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call