Abstract

Structures, thermal behavior, and fragmentation mechanisms of exohedral and substitutional silicon-doped C(60) containing 1-12 Si atoms are investigated by extensive molecular-dynamics simulations. A nonorthogonal tight-binding model is used to mimic the interatomic interactions in the doped fullerenes. Beginning from the minimum-energy structures, the temperature of the doped fullerenes is slowly increased until fragmentation takes place. A correlation can be established between the exohedral and substitutional structures and the corresponding fragmentation mechanisms and fragmentation temperatures. Exohedral C(60)Si(m) fullerenes fragment into two homonuclear pieces, the Si(m) cluster and the C(60) fullerene that remains intact. In contrast, the substitutional C(60-m)Si(m) heterofullerenes undergo structural transformations, including the partial unraveling of the cage, prior to fragmentation. Then, ejection of atoms or small molecules takes place from the distorted structures. The slow heating rate used, combined with long simulation runs, allows us to determine the fragmentation temperature of exohedral and substitutional Si-doped fullerenes as a function of the number of silicon atoms. Substitutional Si-doped fullerenes exhibit much higher fragmentation temperatures (1000-1500 K higher) than the exohedral fullerenes. This can be understood from the different bonding of the Si atoms in both structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call