Abstract

Soils containing gravel (particle size ≥2 mm) are widely distributed over the Qinghai–Tibet Plateau (QTP). Soil mixed with gravel has different thermal and hydrological properties compared with fine soil (particle size <2 mm) and thus has marked impacts on soil water and heat transfer. However, the most commonly used land models do not consider the effects of gravel. This paper reports the development of a new scheme that simulates the thermal and hydrological processes in soil containing gravel and its application in the QTP. The new scheme was implemented in version 4 of the Community Land Model, and experiments were conducted for two typical sites in the QTP. The results showed that (1) soil with gravel tends to reduce the water holding capacity and enhance the hydraulic conductivity and drainage; (2) the thermal conductivity increases with soil gravel content, and the response of the temperature of soil mixed with gravel to air temperature change is rapid; (3) the new scheme performs well in simulating the soil temperature and moisture—the mean biases of soil moisture between the simulation and observation reduced by 25–48 %, and the mean biases of soil temperature reduced by 9–25 %. Therefore, this scheme can successfully simulate the thermal and hydrological processes in soil with different levels of gravel content and is potentially applicable in land surface models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.