Abstract

The ridesharing economy is experiencing rapid growth and innovation. Companies such as Uber and Lyft are continuing to grow at a considerable pace while providing their platform as an organizing medium for ridesharing services, increasing consumer utility as well as employing thousands in part-time positions. However, many challenges remain in the modeling of ridesharing services, many of which are not currently under wide consideration. In this paper, an agent-based model is developed to simulate a ridesharing service in the Washington, D.C. metropolitan region. The model is used to examine levels of utility gained for both riders (customers) and drivers (service providers) of a generic ridesharing service. A description of the Individual Agent Metro-Washington Area Ridesharing Model (IAMWARM) is provided, as well as a description of a typical simulation run. We investigate the financial gains of drivers for a 24 hour period under two scenarios and two spatial movement behaviors. The two spatial behaviors were random movement and Voronoi movement, which we describe. Both movement behaviors were tested under a stationary run conditions scenario and a variable run conditions scenario. We find that Voronoi movement increased drivers’ utility gained but that emergence of this system property was only viable under variable scenario conditions. This result provides two important insights: The first is that driver movement decisions prior to passenger pickup can impact financial gain for the service and drivers, and consequently, rate of successful pickup for riders. The second is that this phenomenon is only evident under experimentation conditions where variability in passenger and driver arrival rates are administered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call