Abstract

AbstractThis paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the deployable energy absorber (DEA), uses an expandable Kevlar honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible-hinge design that enables the honeycomb to be packaged and stowed efficiently until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multicell components and vertical drop tests of a composite fuselage section retrofitted with DEA blocks onto multiterrain. Finite-element models of the test articles were developed and simulations were performed using the transient dynamic code LS-DYNA. In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics m...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.