Abstract

Fire is a major disturbance factor in Daxing'anling region, with important impacts on carbon balance of forest ecosystems. Fire severity and the distinction of microclimates induced by different topography are the primary factors driving the restoration of post-fire net primary productivity (NPP). In this study, we examined the influence of fire severity and topographic factors on the restoration of forest NPP in the Genhe forest region. The spatial and temporal restoration process of post-fire NPP were simulated by combining with MTCLIM and 3PGS model based on multiyear Landsat TM satellite (2008-2012) and climate (1980-2010) data. The results showed that the 3PGS-MTCLIM model could precisely estimate the spatial distribution of NPP at small scales, with a good correlation between simulated and observed values (R2=0.828). The percentage of declined NPP in the year following the fire ranged 43%-80%, and the average NPP recovery period for this region was about 10 years by comparing pre- and post-fire NPP. Fire severity had significant impacts on post-fire recovery. The stronger the fire intensity, the longer the recovery period was needed. The NPP recovered relatively slower after a period of fast-speed recovery. Among the three topographic factors, elevation was the strongest one affecting forest NPP restoration, followed by slope and aspect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.