Abstract
This paper presents a mathematical model for an imperfect ring gyroscope exhibiting spatial variations of the mass and stiffness of the ring arising from manufacturing imperfections and simulates the dynamics of the resonating ring dictating its performance under practical operating conditions. Actual tests performed on real devices involve significant costs and procedures, so the work aims to achieve the same aim with high fidelity models. The model used investigates the effects of shock and frequency splits between the drive and sense modes on the performance of the sensor in relation to the extent of the spatial mass and stiffness variations in the resonating ring. Severe reductions in shock tolerance are observed at shorter shock pulse durations. Small frequency splits between the drive and sense modes have minimal effects on the shock tolerance and the ring’s sense mode amplitude when excited electrostatically, but sharply increase the zero-rate readout (bias) and decrease the sensor’s sensitivity to angular velocity changes (scale factor). The extent of the tolerable frequency splits is limited by the half-power bandwidth of the sense mode, which is predominantly influenced by the system damping.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.