Abstract

In this study, copper bismuth oxide (CuBi2O4) absorber-based thin film heterojunction solar cell structure consisting of Al/FTO/CdS/CuBi2O4/Ni has been proposed. The proposed solar cell device structure has been modeled and analyzed by using the solar cell capacitance simulator in one dimension (SCAPS-1D) software program. The performance of the proposed photovoltaic device is evaluated numerically by varying thickness, doping concentrations, defect density, operating temperature, back metal contact work function, series and shunt resistances. The current density–voltage behaviors at dark and under illumination are investigated. To realize the high efficiency CuBi2O4-based solar cell, the thickness, acceptor and donor densities, defect densities of different layers have been optimized. The present work reveals that the power conversion efficiency can be enhanced by increasing the absorber layer thickness. The efficiency of 26.0% with open-circuit voltage of 0.97 V, short-circuit current density of 31.61 mA/cm2, and fill-factor of 84.58% is achieved for the proposed solar cell at the optimum 2.0-μm-thick CuBi2O4 absorber layer. It is suggested that the p-type CuBi2O4 material proposed in the present study can be employed as a promising absorber layer for applications in the low cost and high efficiency thin-film solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.