Abstract
Exploration missions to the Moon or Mars will expose astronauts to galactic cosmic radiation and low gravitational fields. Exposure to reduced weightbearing and radiation independently result in bone loss. However, no data exist regarding the skeletal consequences of combining low-dose, high-linear energy transfer (LET) radiation and partial weightbearing. We hypothesized that simulated galactic cosmic radiation would exacerbate bone loss in animals held at one-sixth body weight (G/6) without radiation exposure. Female BALB/cByJ four-month-old mice were randomly assigned to one of the following treatment groups: 1 gravity (1G) control; 1G with radiation; G/6 control; and G/6 with radiation. Mice were exposed to either silicon-28 or X-ray radiation. (28)Si radiation (300 MeV/nucleon) was administered at acute doses of 0 (sham), 0.17 and 0.5 Gy, or in three fractionated doses of 0.17 Gy each over seven days. X radiation (250 kV) was administered at acute doses of 0 (sham), 0.17, 0.5 and 1 Gy, or in three fractionated doses of 0.33 Gy each over 14 days. Bones were harvested 21 days after the first exposure. Acute 1 Gy X-ray irradiation during G/6, and acute or fractionated 0.5 Gy (28)Si irradiation during 1G resulted in significantly lower cancellous mass [percentage bone volume/total volume (%BV/TV), by microcomputed tomography]. In addition, G/6 significantly reduced %BV/TV compared to 1G controls. When acute X-ray irradiation was combined with G/6, distal femur %BV/TV was significantly lower compared to G/6 control. Fractionated X-ray irradiation during G/6 protected against radiation-induced losses in %BV/TV and trabecular number, while fractionated (28)Si irradiation during 1G exacerbated the effects compared to single-dose exposure. Impaired bone formation capacity, measured by percentage mineralizing surface, can partially explain the lower cortical bone thickness. Moreover, both partial weightbearing and (28)Si-ion exposure contribute to a higher proportion of sclerostin-positive osteocytes in cortical bone. Taken together, these data suggest that partial weightbearing and low-dose, high-LET radiation negatively impact maintenance of bone mass by lowering bone formation and increasing bone resorption. The impaired bone formation response is associated with sclerostin-induced suppression of Wnt signaling. Therefore, exposure to low-dose, high-LET radiation during long-duration spaceflight missions may reduce bone formation capacity, decrease cancellous bone mass and increase bone resorption. Future countermeasure strategies should aim to restore mechanical loads on bone to those experienced in one gravity. Moreover, low-doses of high-LET radiation during long-duration spaceflight should be limited or countermeasure strategies employed to mitigate bone loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.