Abstract

Abstract Study region This study is conducted in the Magdalen Islands (Quebec, Canada), a small archipelago located in the Gulf of St. Lawrence. Study focus This work was undertaken to support the design of a long-term groundwater monitoring network and for the sustainable management of groundwater resources. This study relies mostly on the compilation of existing data, but additional field work has also been carried out, allowing for the first time in the Magdalen Islands, direct observation of the depth and shape of the transition zone between freshwater and seawater under natural conditions. Simulations were conducted along a 2D cross-section on Grande Entree Island in order to assess the individual and combined impacts of sea-level rise, coastal erosion and decreased groundwater recharge on the position of the saltwater–freshwater interface. The simulations were performed considering variable-density flow and solute transport under saturated-unsaturated conditions. The model was driven by observed and projected climate change scenarios to 2040 for the Magdalen Islands. New hydrological insights for the region The simulation results show that among the three impacts considered, the most important is sea-level rise, followed by decreasing groundwater recharge and coastal erosion. When combined, these impacts cause the saltwater–freshwater interface to migrate inland over a distance of 37 m and to rise by 6.5 m near the coast to 3.1 m further inland, over a 28-year period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.